Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Nat Rev Neurol ; 19(5): 289-304, 2023 05.
Article in English | MEDLINE | ID: covidwho-2324211

ABSTRACT

Current therapies for multiple sclerosis (MS) reduce both relapses and relapse-associated worsening of disability, which is assumed to be mainly associated with transient infiltration of peripheral immune cells into the central nervous system (CNS). However, approved therapies are less effective at slowing disability accumulation in patients with MS, in part owing to their lack of relevant effects on CNS-compartmentalized inflammation, which has been proposed to drive disability. Bruton tyrosine kinase (BTK) is an intracellular signalling molecule involved in the regulation of maturation, survival, migration and activation of B cells and microglia. As CNS-compartmentalized B cells and microglia are considered central to the immunopathogenesis of progressive MS, treatment with CNS-penetrant BTK inhibitors might curtail disease progression by targeting immune cells on both sides of the blood-brain barrier. Five BTK inhibitors that differ in selectivity, strength of inhibition, binding mechanisms and ability to modulate immune cells within the CNS are currently under investigation in clinical trials as a treatment for MS. This Review describes the role of BTK in various immune cells implicated in MS, provides an overview of preclinical data on BTK inhibitors and discusses the (largely preliminary) data from clinical trials.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Humans , Tyrosine Protein Kinase Inhibitors , Central Nervous System/pathology , Signal Transduction
2.
Medicine (Baltimore) ; 101(46): e31813, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2135744

ABSTRACT

The hypothesis is that there is 0a relationship between Parkinson's disease and coronavirus disease 2019 (COVID-19). By summarizing the pathogenesis of Parkinson's disease and COVID-19 and the impact of COVID-19 on the central nervous system, the relationship between Parkinson's disease and COVID-19 was analyzed, including whether Parkinson's disease is a predisposition factor for COVID-19 and whether COVID-19 causes the occurrence of Parkinson's disease. Discuss the impact of COVID-19 on patients with Parkinson's disease, including symptoms and life impact. To summarize the principles, goals and methods of home rehabilitation for Parkinson's disease patients during COVID-19. Through the analysis of this paper, it is believed that COVID-19 may cause Parkinson's disease. Parkinson's disease has the condition of susceptibility to COVID-19, but this conclusion is still controversial.


Subject(s)
COVID-19 , Parkinson Disease , Pneumonia , Humans , Parkinson Disease/complications , Parkinson Disease/pathology , COVID-19/complications , SARS-CoV-2 , Central Nervous System/pathology
4.
Genome Med ; 14(1): 94, 2022 08 17.
Article in English | MEDLINE | ID: covidwho-1993378

ABSTRACT

The cerebrospinal fluid (CSF) features a unique immune cell composition and is in constant contact with the brain borders, thus permitting insights into the brain to diagnose and monitor diseases. Recently, the meninges, which are filled with CSF, were identified as a neuroimmunological interface, highlighting the potential of exploring central nervous system (CNS) immunity by studying CNS border compartments. Here, we summarize how single-cell transcriptomics of such border compartments advance our understanding of neurological diseases, the challenges that remain, and what opportunities novel multi-omic methods offer. Single-cell transcriptomics studies have detected cytotoxic CD4+ T cells and clonally expanded T and B cells in the CSF in the autoimmune disease multiple sclerosis; clonally expanded pathogenic CD8+ T cells were found in the CSF and in the brain adjacent to ß-amyloid plaques of dementia patients; in patients with brain metastases, CD8+ T cell clonotypes were shared between the brain parenchyma and the CSF and persisted after therapy. We also outline how novel multi-omic approaches permit the simultaneous measurements of gene expression, chromatin accessibility, and protein in the same cells, which remain to be explored in the CSF. This calls for multicenter initiatives to create single-cell atlases, posing challenges in integrating patients and modalities across centers. While high-dimensional analyses of CSF cells are challenging, they hold potential for personalized medicine by better resolving heterogeneous diseases and stratifying patients.


Subject(s)
CD8-Positive T-Lymphocytes , Multiple Sclerosis , Brain/pathology , Central Nervous System/pathology , Humans , Immunity , Multicenter Studies as Topic
5.
J Pediatr Hematol Oncol ; 44(3): e723-e727, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1599071

ABSTRACT

B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric malignancy with a highly favorable overall prognosis. Central nervous system (CNS) relapse of B-ALL is relatively rare and is associated with inferior survival outcomes. We present two patients with B-ALL who developed isolated CNS relapse following confirmed infection with severe acute respiratory syndrome coronavirus 2. In addition to individual and disease factors, we posit that delays in therapy together with immune system modulation because of severe acute respiratory syndrome coronavirus 2 may account for these 2 cases of CNS relapsed B-ALL. We report on this clinical observation to raise awareness of this potential association.


Subject(s)
COVID-19 , Central Nervous System Neoplasms , Precursor Cell Lymphoblastic Leukemia-Lymphoma , COVID-19/complications , Central Nervous System/pathology , Central Nervous System Neoplasms/therapy , Child , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Recurrence , SARS-CoV-2
6.
Viruses ; 13(10)2021 10 17.
Article in English | MEDLINE | ID: covidwho-1471000

ABSTRACT

Coronavirus 2019 (COVID-19) is an infectious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that mainly affects the lungs. COVID-19 symptoms include the presence of fevers, dry coughs, fatigue, sore throat, headaches, diarrhea, and a loss of taste or smell. However, it is understood that SARS-CoV-2 is neurotoxic and neuro-invasive and could enter the central nervous system (CNS) via the hematogenous route or via the peripheral nerve route and causes encephalitis, encephalopathy, and acute disseminated encephalomyelitis (ADEM) in COVID-19 patients. This review discusses the possibility of SARS-CoV-2-mediated Multiple Sclerosis (MS) development in the future, comparable to the surge in Parkinson's disease cases following the Spanish Flu in 1918. Moreover, the SARS-CoV-2 infection is associated with a cytokine storm. This review highlights the impact of these modulated cytokines on glial cell interactions within the CNS and their role in potentially prompting MS development as a secondary disease by SARS-CoV-2. SARS-CoV-2 is neurotropic and could interfere with various functions of neurons leading to MS development. The influence of neuroinflammation, microglia phagocytotic capabilities, as well as hypoxia-mediated mitochondrial dysfunction and neurodegeneration, are mechanisms that may ultimately trigger MS development.


Subject(s)
COVID-19/complications , COVID-19/pathology , Central Nervous System/pathology , Multiple Sclerosis/pathology , Neurodegenerative Diseases/virology , Central Nervous System/virology , Cytokine Release Syndrome/pathology , Cytokines/blood , Cytokines/metabolism , History, 20th Century , Humans , Influenza Pandemic, 1918-1919/statistics & numerical data , Multiple Sclerosis/virology , Neurodegenerative Diseases/pathology , SARS-CoV-2/immunology , Post-Acute COVID-19 Syndrome
7.
Trop Biomed ; 38(3): 435-445, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1451066

ABSTRACT

Ever since the first reported case series on SARS-CoV-2-induced neurological manifestation in Wuhan, China in April 2020, various studies reporting similar as well as diverse symptoms of COVID-19 infection relating to the nervous system were published. Since then, scientists started to uncover the mechanism as well as pathophysiological impacts it has on the current understanding of the disease. SARS-CoV-2 binds to the ACE2 receptor which is present in certain parts of the body which are responsible for regulating blood pressure and inflammation in a healthy system. Presence of the receptor in the nasal and oral cavity, brain, and blood allows entry of the virus into the body and cause neurological complications. The peripheral and central nervous system could also be invaded directly in the neurogenic or hematogenous pathways, or indirectly through overstimulation of the immune system by cytokines which may lead to autoimmune diseases. Other neurological implications such as hypoxia, anosmia, dysgeusia, meningitis, encephalitis, and seizures are important symptoms presented clinically in COVID-19 patients with or without the common symptoms of the disease. Further, patients with higher severity of the SARS-CoV-2 infection are also at risk of retaining some neurological complications in the long-run. Treatment of such severe hyperinflammatory conditions will also be discussed, as well as the risks they may pose to the progression of the disease. For this review, articles pertaining information on the neurological manifestation of SARS-CoV-2 infection were gathered from PubMed and Google Scholar using the search keywords "SARS-CoV-2", "COVID-19", and "neurological dysfunction". The findings of the search were filtered, and relevant information were included.


Subject(s)
COVID-19/pathology , Central Nervous System/pathology , Nervous System Diseases/virology , Peripheral Nervous System/pathology , Angiotensin-Converting Enzyme 2/metabolism , Anosmia/virology , Central Nervous System/virology , Dysgeusia/virology , Encephalitis, Viral/virology , Humans , Meningitis, Viral/virology , Nervous System Diseases/pathology , Peripheral Nervous System/virology , SARS-CoV-2 , Seizures/virology
8.
PLoS One ; 16(9): e0255950, 2021.
Article in English | MEDLINE | ID: covidwho-1403298

ABSTRACT

SARS-CoV-2 affects mainly the lungs, however, other manifestations, including neurological manifestations, have also been described during the disease. Some of the neurological findings have involved intracerebral or subarachnoid hemorrhage, strokes, and other thrombotic/hemorrhagic conditions. Nevertheless, the gross pathology of hemorrhagic lesions in the central nervous system has not been previously described in Brazilian autopsy cases. This study aimed to describe gross and microscopic central nervous system (CNS) pathology findings from the autopsies and correlate them with the clinical and laboratory characteristics of forty-five patients with COVID-19 from Manaus, Amazonas, Brazil. Forty-four patients were autopsied of which thirty-eight of these (86.36%) were positive by RT-PCR for COVID-19, and six (13.3%) were positive by the serological rapid test. Clinical and radiological findings were compatible with the infection. The patients were classified in two groups: presence (those who had hemorrhagic and/or thrombotic manifestations in the CNS) and absence (those who did not present hemorrhagic and/or thrombotic manifestations in the CNS). For risk assessment, relative risk and respective confidence intervals were estimated. Macroscopic or microscopic hemorrhages were found in twenty-three cases (52,27%). The postmortem gross examination of the brain revealed a broad spectrum of hemorrhages, from spots to large and confluent areas and, under microscopy, we observed mainly perivascular discharge. The association analyses showed that the use of corticosteroid, anticoagulant and antibiotic had no statistical significance with a risk of nervous system hemorrhagic manifestations. However, it is possible to infer a statistical tendency that indicates that individuals with diabetes had a higher risk for the same outcome (RR = 1.320, 95% CI = 0.7375 to 2.416, p = 0.3743), which was not observed in relation to other comorbidities. It is unknown whether the new variants of the virus can cause different clinical manifestations, such as those observed or indeed others. As a result, more studies are necessary to define clinical and radiologic monitoring protocols and strategic interventions for patients at risk of adverse and fatal events, such as the extensive hemorrhaging described here. It is imperative that clinicians must be aware of comorbidities and the drugs used to treat patients with COVID-19 to prevent CNS hemorrhagic and thrombotic events.


Subject(s)
COVID-19/epidemiology , Central Nervous System/pathology , Hemorrhage/epidemiology , Thrombosis/epidemiology , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , Comorbidity , Female , Humans , Male , Middle Aged , Young Adult
10.
PLoS One ; 16(7): e0254872, 2021.
Article in English | MEDLINE | ID: covidwho-1317145

ABSTRACT

BACKGROUND: COVID-19 is only partly understood, and the level of evidence available in terms of pathophysiology, epidemiology, therapy, and long-term outcome remains limited. During the early phase of the pandemic, it was necessary to effectively investigate all aspects of this new disease. Autopsy can be a valuable procedure to investigate the internal organs with special techniques to obtain information on the disease, especially the distribution and type of organ involvement. METHODS: During the first wave of COVID-19 in Germany, autopsies of 19 deceased patients were performed. Besides gross examination, the organs were analyzed with standard histology and polymerase-chain-reaction for SARS-CoV-2. Polymerase chain reaction positive localizations were further analyzed with immunohistochemistry and RNA-in situ hybridization for SARS-CoV-2. RESULTS: Eighteen of 19 patients were found to have died due to COVID-19. Clinically relevant histological changes were only observed in the lungs. Diffuse alveolar damage in considerably different degrees was noted in 18 cases. Other organs, including the central nervous system, did not show specific micromorphological alterations. In terms of SARS-CoV-2 detection, the focus remains on the upper airways and lungs. This is true for both the number of positive samples and the viral load. A highly significant inverse correlation between the stage of diffuse alveolar damage and viral load was found on a case and a sample basis. Mediastinal lymph nodes and fat were also affected by the virus at high frequencies. By contrast, other organs rarely exhibited a viral infection. Moderate to strong correlations between the methods for detecting SARS-CoV-2 were observed for the lungs and for other organs. CONCLUSIONS: The lung is the most affected organ in gross examination, histology and polymerase chain reaction. SARS-CoV-2 detection in other organs did not reveal relevant or specific histological changes. Moreover, we did not find CNS involvement.


Subject(s)
COVID-19/virology , Central Nervous System/virology , Lung/virology , Lymph Nodes/virology , Viral Load , Aged , Aged, 80 and over , Autopsy/statistics & numerical data , COVID-19/epidemiology , COVID-19/pathology , Central Nervous System/pathology , Female , Humans , Lung/pathology , Lymph Nodes/pathology , Male , Middle Aged
11.
Immunity ; 54(7): 1594-1610.e11, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1281436

ABSTRACT

COVID-19 can cause severe neurological symptoms, but the underlying pathophysiological mechanisms are unclear. Here, we interrogated the brain stems and olfactory bulbs in postmortem patients who had COVID-19 using imaging mass cytometry to understand the local immune response at a spatially resolved, high-dimensional, single-cell level and compared their immune map to non-COVID respiratory failure, multiple sclerosis, and control patients. We observed substantial immune activation in the central nervous system with pronounced neuropathology (astrocytosis, axonal damage, and blood-brain-barrier leakage) and detected viral antigen in ACE2-receptor-positive cells enriched in the vascular compartment. Microglial nodules and the perivascular compartment represented COVID-19-specific, microanatomic-immune niches with context-specific cellular interactions enriched for activated CD8+ T cells. Altered brain T-cell-microglial interactions were linked to clinical measures of systemic inflammation and disturbed hemostasis. This study identifies profound neuroinflammation with activation of innate and adaptive immune cells as correlates of COVID-19 neuropathology, with implications for potential therapeutic strategies.


Subject(s)
Brain/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Microglia/immunology , Blood-Brain Barrier/immunology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/metabolism , Brain/pathology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/pathology , Cell Communication , Central Nervous System/immunology , Central Nervous System/metabolism , Central Nervous System/pathology , Humans , Immune Checkpoint Proteins/metabolism , Inflammation , Lymphocyte Activation , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Olfactory Bulb/immunology , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Respiratory Insufficiency/immunology , Respiratory Insufficiency/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
12.
Med Sci Monit ; 27: e933015, 2021 May 10.
Article in English | MEDLINE | ID: covidwho-1239178

ABSTRACT

Persistent comorbidities occur in patients who initially recover from acute coronavirus disease 2019 (COVID-19) due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). 'Long COVID' involves the central nervous system (CNS), resulting in neuropsychiatric symptoms and signs, including cognitive impairment or 'brain fog' and chronic fatigue syndrome. There are similarities in these persistent complications between SARS-CoV-2 and the Ebola, Zika, and influenza A viruses. Normal CNS neuronal mitochondrial function requires high oxygen levels for oxidative phosphorylation and ATP production. Recent studies have shown that the SARS-CoV-2 virus can hijack mitochondrial function. Persistent changes in cognitive functioning have also been reported with other viral infections. SARS-CoV-2 infection may result in long-term effects on immune processes within the CNS by causing microglial dysfunction. This short opinion aims to discuss the hypothesis that the pathogenesis of long-term neuropsychiatric COVID-19 involves microglia, mitochondria, and persistent neuroinflammation.


Subject(s)
COVID-19/complications , Central Nervous System/pathology , Cognitive Dysfunction/etiology , Inflammation/pathology , Microglia/pathology , Mitochondria/pathology , COVID-19/pathology , Cognitive Dysfunction/pathology , Humans , Neurons/pathology , SARS-CoV-2
13.
Sci Rep ; 11(1): 5402, 2021 03 08.
Article in English | MEDLINE | ID: covidwho-1123146

ABSTRACT

Most multiple sclerosis (MS) patients given currently available disease-modifying drugs (DMDs) experience progressive disability. Accordingly, there is a need for new treatments that can limit the generation of new waves T cell autoreactivity that drive disease progression. Notably, immune cells express GABAA-receptors (GABAA-Rs) whose activation has anti-inflammatory effects such that GABA administration can ameliorate disease in models of type 1 diabetes, rheumatoid arthritis, and COVID-19. Here, we show that oral GABA, which cannot cross the blood-brain barrier (BBB), does not affect the course of murine experimental autoimmune encephalomyelitis (EAE). In contrast, oral administration of the BBB-permeable GABAA-R-specific agonist homotaurine ameliorates monophasic EAE, as well as advanced-stage relapsing-remitting EAE (RR-EAE). Homotaurine treatment beginning after the first peak of paralysis reduced the spreading of Th17 and Th1 responses from the priming immunogen to a new myelin T cell epitope within the CNS. Antigen-presenting cells (APC) isolated from homotaurine-treated mice displayed an attenuated ability to promote autoantigen-specific T cell proliferation. The ability of homotaurine treatment to limit epitope spreading within the CNS, along with its safety record, makes it an excellent candidate to help treat MS and other inflammatory disorders of the CNS.


Subject(s)
Central Nervous System/pathology , Multiple Sclerosis/immunology , T-Lymphocytes/immunology , Taurine/analogs & derivatives , Animals , Antigen Presentation/drug effects , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Cell Proliferation/drug effects , Central Nervous System/drug effects , Central Nervous System/immunology , Disease Models, Animal , Disease Progression , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Mice, Inbred C57BL , Multiple Sclerosis/pathology , Myelin Proteolipid Protein/immunology , Peptide Fragments/immunology , Recurrence , Spleen/pathology , T-Lymphocytes/drug effects , Taurine/pharmacology , gamma-Aminobutyric Acid/pharmacology
14.
PLoS One ; 16(3): e0246681, 2021.
Article in English | MEDLINE | ID: covidwho-1117478

ABSTRACT

Central nervous system and visual dysfunction is an unfortunate consequence of systemic hypoxia in the setting of cardiopulmonary disease, including infection with SARS-CoV-2, high-altitude cerebral edema and retinopathy and other conditions. Hypoxia-induced inflammatory signaling may lead to retinal inflammation, gliosis and visual disturbances. We investigated the consequences of systemic hypoxia using serial retinal optical coherence tomography and by assessing the earliest changes within 24h after hypoxia by measuring a proteomics panel of 39 cytokines, chemokines and growth factors in the plasma and retina, as well as using retinal histology. We induced severe systemic hypoxia in adult C57BL/6 mice using a hypoxia chamber (10% O2) for 1 week and rapidly assessed measurements within 1h compared with 18h after hypoxia. Optical coherence tomography revealed retinal tissue edema at 18h after hypoxia. Hierarchical clustering of plasma and retinal immune molecules revealed obvious segregation of the 1h posthypoxia group away from that of controls. One hour after hypoxia, there were 10 significantly increased molecules in plasma and 4 in retina. Interleukin-1ß and vascular endothelial growth factor were increased in both tissues. Concomitantly, there was significantly increased aquaporin-4, decreased Kir4.1, and increased gliosis in retinal histology. In summary, the immediate posthypoxic period is characterized by molecular changes consistent with systemic and retinal inflammation and retinal glial changes important in water transport, leading to tissue edema. This posthypoxic inflammation rapidly improves within 24h, consistent with the typically mild and transient visual disturbance in hypoxia, such as in high-altitude retinopathy. Given hypoxia increases risk of vision loss, more studies in at-risk patients, such as plasma immune profiling and in vivo retinal imaging, are needed in order to identify novel diagnostic or prognostic biomarkers of visual impairment in systemic hypoxia.


Subject(s)
Hypoxia/complications , Inflammation/etiology , Retina/pathology , Animals , Central Nervous System/pathology , Cytokines/analysis , Cytokines/blood , Female , Hypoxia/blood , Hypoxia/pathology , Inflammation/blood , Inflammation/pathology , Intercellular Signaling Peptides and Proteins/analysis , Intercellular Signaling Peptides and Proteins/blood , Male , Mice, Inbred C57BL
15.
Int J Mol Sci ; 22(5)2021 Feb 26.
Article in English | MEDLINE | ID: covidwho-1115421

ABSTRACT

In this Review, we briefly describe the basic virology and pathogenesis of SARS-CoV-2, highlighting how stem cell technology and organoids can contribute to the understanding of SARS-CoV-2 cell tropisms and the mechanism of disease in the human host, supporting and clarifying findings from clinical studies in infected individuals. We summarize here the results of studies, which used these technologies to investigate SARS-CoV-2 pathogenesis in different organs. Studies with in vitro models of lung epithelia showed that alveolar epithelial type II cells, but not differentiated lung alveolar epithelial type I cells, are key targets of SARS-CoV-2, which triggers cell apoptosis and inflammation, while impairing surfactant production. Experiments with human small intestinal organoids and colonic organoids showed that the gastrointestinal tract is another relevant target for SARS-CoV-2. The virus can infect and replicate in enterocytes and cholangiocytes, inducing cell damage and inflammation. Direct viral damage was also demonstrated in in vitro models of human cardiomyocytes and choroid plexus epithelial cells. At variance, endothelial cells and neurons are poorly susceptible to viral infection, thus supporting the hypothesis that neurological symptoms and vascular damage result from the indirect effects of systemic inflammatory and immunological hyper-responses to SARS-CoV-2 infection.


Subject(s)
COVID-19/pathology , Organoids/virology , SARS-CoV-2/physiology , Stem Cells/virology , Animals , Apoptosis , COVID-19/virology , Cardiovascular System/cytology , Cardiovascular System/pathology , Cardiovascular System/virology , Central Nervous System/cytology , Central Nervous System/pathology , Central Nervous System/virology , Gastrointestinal Tract/cytology , Gastrointestinal Tract/pathology , Gastrointestinal Tract/virology , Humans , Inflammation/pathology , Inflammation/virology , Lung/cytology , Lung/pathology , Lung/virology , Organoids/pathology , Stem Cells/pathology , Viral Tropism , Virus Internalization
16.
Hosp Pract (1995) ; 49(3): 157-163, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1069189

ABSTRACT

There is increasing evidence of the ability of the novel coronavirus to invade the central nervous system (CNS). But how does a respiratory virus invade the highly protected CNS? Here, we reviewed available literature and case reports to determine CNS involvement in COVID-19, and to identify potential regions of the brain that may be affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its possible route of entry into the brain to identify its pathogenicity. Based on the symptoms, the parietal lobe and the cerebellum are the likely targets of SARS-CoV-2; however, further work is needed to elucidate this. The presence of ACE2, used by SARS-CoV-2 for cell entry, in the brain as well as detection of the virus in the cerebrospinal fluid, further assert that SARS-COV-2 targets the brain, and therefore, medical practitioners should take that into account when dealing with patients suffering from COVID-19.


Subject(s)
Blood-Brain Barrier/virology , COVID-19/virology , Central Nervous System/virology , SARS-CoV-2/pathogenicity , Blood-Brain Barrier/pathology , Brain/virology , COVID-19/pathology , Central Nervous System/pathology , Cerebrospinal Fluid/virology , Humans
17.
Cytokine ; 138: 155404, 2021 02.
Article in English | MEDLINE | ID: covidwho-996816

ABSTRACT

The new coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can trigger a hyperinflammatory state characterized by elevated cytokine levels known as hypercytokinemia or cytokine storm, observed most often in severe patients. Though COVID-19 is known to be a primarily respiratory disease, neurological complications affecting both the central and peripheral nervous systems have also been reported. This review discusses potential routes of SARS-CoV-2 neuroinvasion and pathogenesis, summarizes reported neurological sequelae of COVID-19, and examines how aberrant cytokine levels may precipitate these complications. Clarification of the pathogenic mechanisms of SARS-CoV-2 is needed to encourage prompt diagnosis and optimized care. In particular, identifying the presence of cytokine storm in patients with neurological COVID-19 manifestations will facilitate avenues for treatment. Future investigations into aberrant cytokine levels in COVID-19 patients with neurological symptoms as well as the efficacy of cytokine storm-targeting treatments will be critical in elucidating the pathogenic mechanisms and effective treatments of COVID-19.


Subject(s)
COVID-19/pathology , Cerebrovascular Disorders/pathology , Cytokine Release Syndrome/pathology , Cytokines/blood , Nervous System Diseases/pathology , COVID-19/therapy , Central Nervous System/pathology , Cerebrovascular Disorders/virology , Cytokine Release Syndrome/therapy , Humans , Nervous System Diseases/virology , Peripheral Nervous System/pathology , SARS-CoV-2
18.
Hum Pathol ; 105: 74-83, 2020 11.
Article in English | MEDLINE | ID: covidwho-933118

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has been declared by the World Health Organization as an emerging public health problem of global importance and classified as a pandemic. SARS-CoV-2 infection can result in diverse, multiorgan pathology, the most significant being in the lungs (diffuse alveolar damage in its different phases, microthrombi, bronchopneumonia, necrotizing bronchiolitis, viral pneumonia), heart (lymphocytic myocarditis), kidney (acute tubular injury), central nervous system (microthrombi, ischemic necrosis, acute hemorrhagic infarction, congestion, and vascular edema), lymph nodes (hemophagocytosis and histiocytosis), bone marrow (hemophagocytosis), and vasculature (deep vein thrombosis). An understanding of the spectrum and frequency of histologic findings in COVID-19 is essential for gaining a better understanding of disease pathophysiology and its ongoing impact on public health. To this end, we conducted a systematic meta-analysis of histopathologic observations to date and review the reported findings.


Subject(s)
COVID-19/pathology , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Autopsy , Biopsy , Blood Vessels/pathology , Central Nervous System/pathology , Female , Humans , Kidney/pathology , Lung/pathology , Lymph Nodes/pathology , Male , Middle Aged , Myocardium/pathology , Thromboembolism/pathology
19.
Int J Mol Sci ; 21(18)2020 Sep 22.
Article in English | MEDLINE | ID: covidwho-797048

ABSTRACT

In December 2019, physicians reported numerous patients showing pneumonia of unknown origin in the Chinese region of Wuhan. Following the spreading of the infection over the world, The World Health Organization (WHO) on 11 March 2020 declared the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak a global pandemic. The scientific community is exerting an extraordinary effort to elucidate all aspects related to SARS-CoV-2, such as the structure, ultrastructure, invasion mechanisms, replication mechanisms, or drugs for treatment, mainly through in vitro studies. Thus, the clinical in vivo data can provide a test bench for new discoveries in the field of SARS-CoV-2, finding new solutions to fight the current pandemic. During this dramatic situation, the normal scientific protocols for the development of new diagnostic procedures or drugs are frequently not completely applied in order to speed up these processes. In this context, interdisciplinarity is fundamental. Specifically, a great contribution can be provided by the association and interpretation of data derived from medical disciplines based on the study of images, such as radiology, nuclear medicine, and pathology. Therefore, here, we highlighted the most recent histopathological and imaging data concerning the SARS-CoV-2 infection in lung and other human organs such as the kidney, heart, and vascular system. In addition, we evaluated the possible matches among data of radiology, nuclear medicine, and pathology departments in order to support the intense scientific work to address the SARS-CoV-2 pandemic. In this regard, the development of artificial intelligence algorithms that are capable of correlating these clinical data with the new scientific discoveries concerning SARS-CoV-2 might be the keystone to get out of the pandemic.


Subject(s)
Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Artificial Intelligence , Betacoronavirus/isolation & purification , COVID-19 , Central Nervous System/pathology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Kidney/pathology , Lung/diagnostic imaging , Lung/pathology , Myocardium/pathology , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Prognosis , SARS-CoV-2 , Skin/pathology
20.
Future Microbiol ; 15: 1287-1305, 2020 09.
Article in English | MEDLINE | ID: covidwho-732937

ABSTRACT

Aim: Despite the similarities in the pathogenesis of the beta coronaviruses, the precise infective mechanisms of SARS-CoV-2 remain unclear. Objective: In this review, we aim to focus on the proposed theories behind the pathogenesis of SARS-CoV-2 and highlight the clinical complications related to COVID-19. Methods: We conducted a literature search in Pubmed, Scopus and Google Scholar for the relevant articles regarding clinical complications and pathogenesis of COVID-19. Results: Related articles were included and discussed. Conclusion: Respiratory system and the lungs are the most commonly involved sites of COVID-19 infection. Cardiovascular, liver, kidneys, gastrointestinal and central nervous systems are involved with different frequencies and degrees of severity.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Angiotensin-Converting Enzyme 2 , COVID-19 , Cardiovascular System/pathology , Cardiovascular System/virology , Central Nervous System/pathology , Central Nervous System/virology , Coronavirus Infections/drug therapy , Coronavirus Infections/transmission , Cytokines/blood , Gastrointestinal Tract/pathology , Gastrointestinal Tract/virology , Humans , Kidney/pathology , Kidney/virology , Liver/pathology , Liver/virology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/transmission , Respiratory System/pathology , Respiratory System/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL